Durable Cement Systems For Long Term Zonal Isolation

DEA Technology Forum
Nov 13, 2013

Deepak Khatri
Director, Business Development Onshore Cementing
Agenda

• Objectives of primary cement job
• Some known challenges
• Causes
• Our approach
• Software simulation
• Fluid solution
• Summary
Primary Cementing Objectives

• Zonal isolation
 – Protect fresh water zones
 – Allow selective production or injection
 – Seal loose formations
 – Well control
 – Abandon a well or zone

• Protection of casing

• Protection of borehole
 – Prevent hole sloughing to allow for deeper drilling

• Change direction of well
Challenge

- **Sustained casing pressure**
 - Observed in more than 11,000 casing strings in 8,000 wells in OCS
 - Magnitude of leak rate is as important as magnitude of pressure when determining potential hazard

Gulf of Mexico Wells

(LSU Study, 2002)
Causes

- High-compressive strength vs. lower compressive strength compressible systems
- Poor cement bonding
 - Cement best practices
- Cement failure
 - Pressure changes
 - Temperature changes
 - Reservoir changes
What Do We Do Today

- Follow best practices
 - Centralization
 - Spacers
 - Displacement rates
 - Pipe movement

- Set for Life™ cementing system designs
 - DuraSet system
 - Low Young’s Modulus
 - Higher Poisson’s ratio
 - Improved tensile to compressive strength ratio
 - IsoVision™ software modeling application
Set Cement Properties for Long-term Well Integrity

Stresses due to:
- Pressure changes
- Temperature changes
- Mechanical impacts

Failure modes
- Tensile
- Compressive
- De-bonding

Set cement properties
- Tensile strength
- Young's modulus
- Poisson’s ratio
- Flexural strength
- Compressive strength
IsoVision Software Simulation
Fluid Solution: DuraSet System

- Provides improved tensile strength and elastic properties
- Enhanced mechanical properties
- Can be foamed
- Improved fracture toughness
- Used in wells that have a history of sustained casing pressure development after the cement sets
- Can be combined with other systems for multi-purpose benefits
 - CO2 resistance
- Enhanced with positive expansion:
 - Flexible expanding system
DuraSet Technical Specifications

<table>
<thead>
<tr>
<th>Typical Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slurry Density Range</td>
</tr>
<tr>
<td>9 to 20 ppg (1078 to 2397 kg/m3)</td>
</tr>
<tr>
<td>Temperature Range</td>
</tr>
<tr>
<td>70-450 deg F (21 -232 deg C) BHCT</td>
</tr>
</tbody>
</table>

Applications

- Critical primary cementing operations
- Fields with a history of sustained annular pressure
- Wells exposed to high-pressure fracturing operations
- Multilateral wellbore junctions
Industry Recognition & Case Histories

- 2013 World Oil Award for Best Drilling Technology
- SPE 150624, Kuwaits’ first Thermal Venture-Success with resilient cement
- Abu Dhabi, Fourteen wells successful campaign
Self Sealing Cement System

- What if assumptions are incorrect
- Self Sealing Cement System
 - More durable cement system to resist down hole fluctuations in temperature and pressure
 - Cracks self seal on contact with liquid hydrocarbon
 - Prevents flow through cement matrix or induced micro-annulli
 - Reduces risk of sustained casing pressure
 - Dormant in cement until needed
Test Apparatus

- Test apparatus designed and built
 - Cement cured under temperature and pressure
 - Adjustment of desired crack or microannulus width
 - Cement hydraulically cracked under temperature
 - Capable of controlling, measuring and recording developed crack size
 - Test through cracked cement matrix or induced microannulus
 - Measure and record flow and pressure
 - Capable of testing with gas, oil or other fluids
Self Sealing Cement Results

- Material easily mixed and blended in cement:
 - Hydrophilic
 - Passed slot testing
- No negative effects on cement properties
 - Enhanced mechanical properties

<table>
<thead>
<tr>
<th></th>
<th>Without Self Sealing Material</th>
<th>With Self Sealing Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressive Strength</td>
<td>2300 psi</td>
<td>2350 psi</td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>235 psi</td>
<td>350 psi</td>
</tr>
<tr>
<td>Young’s Modulus</td>
<td>1.6×10^6</td>
<td>7×10^5</td>
</tr>
<tr>
<td>Poisson’s Ratio</td>
<td>0.18</td>
<td>0.30</td>
</tr>
</tbody>
</table>
Self-Sealing Cement: Multiple sealing capability

Fracturing - Break and Seal test
Controlled crack width = 0.003", curing time = 96 hrs, Heal Time = 24 hrs, rm temp

Test Pressure (psi)

Ageing Time (days)
Self Sealing Cement: Specifications & Compatibility

- Recommended product loading will be between 6% and 12% BOWC, but it will depend on individual test.
- The specific gravity is 0.94.
- Compatible with all API and ASTM type cement, pozzolan, and lightweight cements and most cement additives.
- No negative effect on other cement properties.
- Future development of self-sealing product for dry gas and water.
Self Sealing Cement Applications

- **When**
 - Wells producing oil and or condensates – Oil Shales
 - Fields with occurrences of sustained casing pressure
 - Areas of high tectonic stress and or movement
 - Risk mitigation - Unable to follow all of best practices
 - Less than optimal centralization
 - No pipe movement
 - Plug and Abandonment

- **How**
 - At minimum upper 500 -1000 ft of cement column
 - Across areas where cross-flow could be an issue
 - In all cement plugs
 - Above areas to be hydraulically fractured
Summary

- Wells drilled today are more complex & have to withstand different levels of stress
- Sustained casing pressure is a concern
- Improvements have been made but there are still issues
- DuraSet cement system can help mitigate the risks if well conditions are known
- However, if well conditions are not fully known, a combination of DuraSet and Self-sealing cement
- Engineered approach a must to look at the complete picture ie good cementing practices